
A New Synthesis of Racemic Coronamic Acid and Other Cyclopropyl Amino Acids

M Suzuki, E E Gooch and C H Stammer University of Georgia, Chemistry Department Athens, Georgia 30602

Summary A new method, in which various diazocompounds are added to a dehydro alanine derivative, allows the synthesis of coronamic acid and several other cyclopropyl amino acids

The structure¹ and synthesis² of coronatine (1), a bacterial toxin, have recently been reported In connection with our recent work³ on cyclopropyl amino acids $(\nabla AA)^4$, we had occasion to prepare racemic coronamic acid⁵ ($\underline{2}$) by a procedure somewhat simpler than that previously reported and one which is useful in the synthesis of other cyclopropyl amino acids

The ready availability of dehydroalanine derivatives by dehydration 6 of the corresponding serine derivatives makes these compounds attractive as intermediates in the synthesis of cyclopropyl amino acids Scheme I outlines the reaction sequence used The dehydro compound (3) was Scheme I

NHBoc CO_{2PNB} Boc-Ser OpNB ---> CH₂=CCO₂pNB 1 DCC, CuCl/CHCl₃, 25° $RCHN_2/Et_20$, -15° 3 4 11 toluene, 900 111 pNB = p-nitrobenzyl NaOH/MeOH, 250 1V Boc = t-butoxycarbonyl 111 NHBoc NHBoc 209 H CO₂PNB 6 5

prepared in 80% yield,⁷ mp 94-95°, vinyl H at $\delta 6$ 2 and 5 75 ppm Treatment of <u>3</u> with various diazo compounds (Table I) in cold ether solution gave pyrazolines⁷ (<u>4</u>) which showed a characteristic ¹H NMR multiplet in the $\delta 4$ 4~5 2 range Pyrolysis of the pyrazolines at ~90° in

RCHN ₂		5	_6
Н	89(80°)	100(118°)	96(177°)
CH3	96(111°)	94(98°)	37(158°)
CH ₃ CH ₂	59(011)	77(100°)	50(1240)
$(CH_3)_2$ CH	98(79°)	95(143°)	73(197°)
Ph	92(116°)		67(160°)

Table I Yields (%) and Melting Points of Products

toluene gave excellent yields of the cyclopropanes⁷ (5) Hydrolysis of 5 under very mild conditions gave the N-Boc cyclopropyl amino acids⁷ in good yields as expected The ∇ Phe derivative (6,R=Ph) was compared directly with previously prepared³ Boc- ∇ EPhe OH and found to be identical In the case of 6, R=CH₂CH₃, the coronamic acid derivative, deblocking with CF₃CO₂H/CH₂Cl₂ (50%) was carried out in the usual manner to give the TFA salt of racemic coronamic acid⁷ in 81% yield, mp 168-169° Comparison of this sample with the IR and ¹H NMR spectra of the TFA salts prepared from samples of racemic coronamic and <u>allo</u>-coronamic acids⁸ showed it to be identical to racemic coronamic acid

Since both the coronamic acid and the VPhe derivatives obtained by this method are shown to have the E-configuration, it appears that this procedure provides a single pure isomer. We assume, therefore, that the other ∇AA derivatives $(5,6,R=CH_3,(CH_3)_2CH)$ also have the E-configuration. Based on the known⁹ configurational crossover during pyrolysis of 3,5-disubstituted pyrazolines, we expect that the pyrazolines (4) have the Z-configuration

References

- 1 A Ichihara, K Shiraishi, H Sato, S Sakamura, K Nishiyama, R Sakai, A Furusaki and T Matsumoto, J Am Chem Soc 1977, 99, 636
- 2 a) A Ichihara, K Shiraishi, S Sakamura, K Nishiyama and R Sakai, Tetrahedron Lett , 1977, 269, b) M E Jung and K M Halweg, <u>ibid</u>, 1981, **22**, 2735
- 3 a) S W King, J M Riordan, E M Holt and C H Stammer, J Org Chem, 1982, 47, 3270, b) H Kimura and C H Stammer, J <u>Org Chem</u>, 1983, in press
- 4 The inverted triangle, ∇ , is used to indicate amino acids in which the C_{α}, C_{β} -bond is one side of a cyclopropane ring Superscripts, ∇^{E} and ∇^{Z} , are used to designate the configuration about the ring
- 5 In the nomenclature of amino acid chemistry, coronamic acid is $2R, 3S \nabla^E N = It$ is surprising that L-acylase hydrolyzed the 2R, 3S-isomer of racemic N-acetylcoronamic acid and rejected the 2S, 3R-isomer ^{2a} We might have expected <u>the latter</u> to be recognized by the enzyme as corresponding to the natural L-amino acid having the 2S-configuration
- 6 L Somekh and A Shanzer, J Org Chem, 1983, 48, 907 and references therein
- 7 $\,$ All new compounds showed elemental analytical values for C,H and N in agreement with the calculated $\,$
- 8 We are extremely grateful to Dr Akıtamı Ichıhara, Hokkaıdo University, Sapporo, Japan for his generous gifts of these compounds
- 9 (a) R J Crawford and A Mishra, J Am Chem Soc, 1965, 87, 3768, b) T C Clarke, L A Wendling and R G Bergman, 1975, 97, 5638
 (Received in USA 14 June 1983)